
~ . . ' .  
-I 

*A * + 

- -__ . 

TECHNICAL REPORT NO. NAS-I 

Spreading Resistance As 

A Function Of Geometry And Frequency 

Prepared by: 

L. E. Dickens 
The Johns Hopkins University 

Carlyle Barton Laboratory 
Charles and 34th Streets 

Baltimore, Maryland 21218 

For 

NASA/Goddard Space Flight Center 
Glenn Dale Road 

Greenbelt, Maryland 20771 

o b  

Copy No. 9 

. . .  . ' ._.  .- . 



1 TECHNICAL REPORT NO. NAS-1 

SPREADING RESISTANCE AS A 

FUNCTION O F  GEOMETRY AND FREQUENCY 

February 1965 

Contract No. : NAS 5-3546 

a 

I 

. 
Prepared by: 

L. E. Dickens 
The Johns Hopkins University 

Carlyle Barton Laboratory 
Charles  and 34th Streets  

Baltimore, Maryland 21218 

For 

NASA/Goddard Space Flight Center 
Glenn Dale Road 

Greenbelt, Maryland 20771 



FOREWORD 

The author would like to  express his appreciation of the 

support rendering possible this investigation. 

agencies a r e  the National Aeronautics and Space Administration 

through Contract NAS 5-3546; and the A i r  Force Avionics 

Laboratory through contract A F  33( 657)-11029. Acknowledgment 

goes also to Professors C. F. Miller and C. H. Palmer, Jr. 

who served as first and second referees respectively. The 

author would like also to thank Doctor J. M. Kopper for his review 

of the manuscript; Mrs .  M. D. Denburg and Miss  P. A. Shipley for 

numerical calculatione and curve plotting; Mr. W. A. Ray and 

Mrs.  N. L. Karweit for the programming of the calculations 

executed on the IBM 7094; Mr. C. M. LaPorte and Mr. R. H. Gordon 

for preparing the numerous figures; and last, but not least, 

Mrs. D. C. Scholl who carefully typed the manuscript. 

The supporting 



. . 

ABSTRACT 

The equivalent circuit applicable to most semiconductor 
diodes contains a term,  R,, called the spreading resistance which 
is a very critical parameter of any diode. 
limits the conversion efficiency and increases the noise temperature. 
In parametric amplifiers, Rs affects the overall impedance levels 
and determines the minimum noise figure of which the amplifier is 
capable. In harmonic generators it drastically effects the conver - 
sion efficiency a s  it not only dissipates power at the input and output 
harmonic frequencies but a l so  at every idler frequency for which 
current may flow through the diode, 

In a mixer diode, R, 

R,, of course, can be measured, but it is most important 
to be able to predict, before hand, the value of R, for a given 
geometry as well a s  frequency. 
well demonstrated by calculations of Rs at low frequencies for 
which solutions of Laplace's equation hold. There calculations have 
been made, the computations having been performed on an IBM7094 
digital computer. 
been given for a wide range of geometries. 
presented in easily used graphical form. 

The geometrical variations a r e  

The resistance of two typical configurations has 
The data has been 

Section I11 details more specifically the problems encountered 
when high frequency operation must be evaluated. The cylindrical 
capacitor is examined with emphasis on the configuration which 
applies to the variable capacitor diode which is used primarily for 
harmonic power generation. 

The point contact diode configuration is examined and the 
field equations a r e  derived in te rms  of the oblate spheroidal 
coordinates. 
for such an analysis and that the spreading resistance is quite easily 
derived in this system. 

It i s  shown that this i s  the natural coordinate system 
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I. INTRODUCTION 

The theme of this paper is the determination of the resistance 

encountered when a source of electricity makes contact through a 

(usually) flat disk electrode with a mass of conducting material 

which has located, a t  some distance from the disk, a sink of 

electricity, 

applicability to  the quantitative determination of the power -10s s 

mechanisms of various semiconductor devices. 

The reasons for pursuing such a subject iS its direct  

Semiconductor p-n junctions formed by solid- state 

diffusion, dot -alloy techniques, or other similar methods a r e  

relatively low loss nonlinear capacitor s when properly biased. 

These diodes a r e  used well into the microwave frequencies (1) to 

make low noise amplifiers, amplifying frequency converters, 

harmonic and sub-harmonic generators, switches, limiters, and 

voltage tunable passive circuits. 

single junctions can control kilowatts of peak microwave power. 

As switches or protective devices, 

Point contact diodes as  nonlinear res is tors  and nonlinear 

capacitors a r e  similarly distinguished ( Z ) ,  (3). 

diode as a nonlinear resistor is as yet unchallenged as a micro- 

wave mixer or rectifier, and the point contact diode as a nonlinear 

capacitor has the potential (4) of much higher frequency operation 

as a low noise amplifier than the broad a rea  junction devices. 

The point contact 



Tunnel diodes a r e  fabricated both by broad-area and by 

point-contact techniques. 

semicondiictor diode which exhiloits a negative resistance characteristic 

over a small voltage range in the forward biased direction. 

Because of this negative resistance and an aerrociated relatively 

low noise property the point contact tunnel diode has a strong 

potential application as a microwave amplifier and low level oscillator 

for frequencies well into the millimeter wave range. 

The tunnel d d d e  is a very heavily doped 

The generally accepted (5 )  equivalent circuit of the junction, 

applicable to each of the above discuseed semiconductor diodes by 

proper specification of the elements, is shown in Figure 1. 

FIGURE 1 EQUIVALENT CIRCUIT OF THE JUNCTION OF A 
SEMICONDUCTOR DIODE. 

The equivalent circuit consists of a nonlinear resistance R 

shunted by a nonlinear capacitance C, these two in ser ies  with a 

resistance R,. R and C a r e  nonlinear junction properties which 
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' .  

distinguish the mode of operation of the diode. 

used as a variable reactance in a parametric amplifier, it is biased 

in the nonconducting region and the barr ier  resistance R becomes 

very high and thus negligible in comparison to the reactance of C. 

When the diode is used a s  a detector or mixer it is usually driven 

sufficiently far into the forward conducting region that R becomes 

much less  than the reactance of C 

negligible. The resistance P, i e  the spreading resistance in the 

When the diode is 

and thus the C becomes 

semiconductor resulting from the constriction of current flow linea 

in the semiconductor near the contact. 

R exists and represents the loss mechanism for any diode. 
S 

The determination of Rs under various conditions makes up the 

subject of this paper. 

transistor diodes (base, emitter, collector). 

The results may be extended to include the 

The calculation of Rs becomes a problem with geometrical 

dependence, and, as  skin effect will play a dominant role in the 

control of the flow of high frequency electric current, the calculations 

must accurately include this effect. In all  the cases to be considered 

in the following sections cylindrical symmetry will be maintained 

in the device configuration a s  an aid to computation; however this 

imposes no limitations as it is a thoroughly practical assumption, 

3 



Section I1 of this paper deals with the steady flow of electric 

current in unif.orm isotropic media with the particularization of the 

treatment to the basic semiconductor diode configuration. 

consideration of this type of potential problem is not new. 

the first published consideration 

Weber (5) in 1873, f rom whose works Gr-ay and Mathews 

( 6 )  obtained many very instructive examples to demonstrate the 

application of Bessel functions to problems regarding the distribution 

of potential, and to  the calculation of the resistance between source 

and sink located within an isotropic medium. 

the resistance of electric contacts (7, 8) became important as 

industry began making use of such devices a s  circuit breakers, relays, 

terminals, commutators, etc. The opening of the field of 

welding generated renewed interest in the determination of contact 

resistance (9, 10). Now the use of semiconductor diodes has 

created some rather particular problems. 

The 

Probably 

of this field waa that by 

Later the subject of 

There exist many aspects 

of semiconductor device design (11) which present problems involving 

spreading resistance for which no elementary solution has yet been 

obtained. 

Section III presents the theory of skin effect a s  it applies to 

parametric (capacitor) diodes and point-contact diodes. Most 

4 
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references give no more than a passing glance at the subject of skin 

effect; thus, credit must be givento the text (12 )  by King on 

Electromagnetic Engineering which is most notable for its 

completeness. 

5 



11. ZERO FREQUENCY SPREADING RESISTANCE 

This section begins with a review of the classical problem8 

a e  presented by Weber. 

the problems of the eemiconductor diodes encountered at frequencies 

eufficiently low that the skin effect has not yet set in. 

On this foundation a r e  then conetructed 

A. CLASSICAL EXAMPLES 

The simplest case, but one which is quite applicable 

to  the problem of contact resistance, is that of the spherical contact 

imbedded in an infinite space of conductivity 0. Ae the apace i e  

infinite in extent and the only disturbance within the space is the 

eource of potential, a perfectly conducting sphere of radiue - a, 

then, i f  the potential of the ephere be Vo, the potential at a distance 

r is 
a 
r o  v = - v  

Let the current density be J = - O W ,  then at any radial distance r 

UaVo 
J = -  

r 

The total current flowing into or away from the sphere is 

( 3 )  
2 IT = h a  Jo , 

where J 

between the source, the perfectly conducting sphere, and the sink 

at infinity is just 

is the current density evaluated at r = a. The resistance 
0 

6 



Now consider Figure 2. 

HEMI SPHERICAL 
( SOURCE 1 
ELECTROOE 

I 

SEMICONOUCTOR 

FIaURE 2 CASE OF HEMISPHERICAL CONTACT TO 
SEMICONDUCTOR. 

If the radius of the source electrode is a and the electrode - 
at a distance great in comparison with a from any part of the metal - 
sink, then for this limiting case the resistance will be double that 

given by (4). In this caee, the first applicable example of spreading 

r e si stanc e, 
1 

R B  = ZGjZ 0 (5)  

The next case to be examined is that of a circular disk contact 
i 

of radius - a upon an infinite half-space. (GLM) gives an integral 

1 
to mean reference ( 6 ) .  

G&M - Gray and Mathews - abbreviation used here and later 



form for the potential distribution in the infinite half-space below the 

disk. 

axis of the disk, and the origin at the center, 

If the disk be perfectly conducting, i f  - 2: be taken along the 

dh v = -  2v0 J m  e''' sin (ha) J o ( h r )  
TT 

0 

where Vo is the disk potential, and V is the potential at any point 

(r, 2). Jo(X) is the zero order Bessel function. 

Justification for ( 6 )  can be briefly given as follows. 

equation V V = 0, which must surely hold, i s  given in cylindrical 

Laplace's 

2 

coordinates as  

B y B ym m et  r y c on B id e r a ti on 8 

Then, if we set  V = RZ,  it can be seen that by separation of 

variables and s etting 

and 

2 
8 

5. (a2R 1 BR 
r 8 r  7 t -  - ) = k  

8r 

solutions for V can be written in the form 

4th 2 
V = e Jo(Ar) 8 

8 



in which form the integral is given, thus satisfying Equation (7). 

show that V = Vo on r 15 a and z b 0 ,  set  1; = 0 in  Equation ( 6 )  and obtain 

To 

2vo 1 sin (Aa) J o ( h r )  dA V(z = 0) = - 
T 

But (G&M) (p. 126) evaluates the integral of (42)  as 

dh Q) 

[ s in (ha )  Jo(Ar)X- =; i f  r C a 

0 

i f r > a  -1 a = sin 

and as the r esults of (13) and (14) coincide for r = a we have the fact 

that V = Vo for r g a, z = 0. 

Now to find the resistance between the disk electkode and the 

sink at infinity, the current density must be obtained. Again by use 

of 

J = -0VV 

there is obtained 

Az J = - -  2uvo e sin ( h a )  Jo(Ar) dA , 
lr 

but again G&M (p. 73) present the integral evaluated for z = 0 

2 2  sin (ha) J o ( h r )  dA = 0 if 1: > a  
a> 

0 

9 



and then on the disk the current density is Jo. 

The total current, IT , flowing through (or into) the disk is obtained 

by integrating the current density over the a rea  of the disk; hence, 

and in terms of total current, the current density on the disk is 

The negative sign in (20) simply implies that current flows in the 

negative z direction. - 
The resistance between the source electrode and the sink 

at infinity is then 

1 
aa R = q  . 

Now examine the following figure. 

CIRCULAR DISK 

SEMICONDUCTOR 

FIGURE 3 CASE OF THE FLAT CIRCULAR CONTACT TO 
SEMIC ONDUCT OR. 

10 



If we take the radius of the source electrode to be a and the 

electrode at a distance great in comparison with - a from any part of 

- 

the metal sink, then for this limiting case the resistance will be 

essentially that given by (22). 

example of spreading resistance RE, 

Thus in this case, the second applicable 

i 
= e 

This is the expression for spreading resistance most often 

encountered in the literature. 

multiplicative factor difference between the value of RE for the flat 

circular disk and the value of Rs for  the hemispherical contact. , 

Note that there is only a ( n / 2 )  

B. CYLINDRICAL SEMICONDUCTOR COMPONENTS 

The above given examples a r e  classical problems to 

which most authors refer, and the formulas for Rs of Equations (5)  

and (23) a r e  those most often presented as representing the spreading 

resistance of point contact devices. 

Many, i f  not most, problems associated with 

semiconductor diodes, and this includes the transistor diodes (base, 

emitter, collector), a r e  not usually subject to the assumption of 

contact so small  that the space below can be congidered the infinite 

half apace. 

low frequency operation is assumed) is that the disk is an 

equipotential. 

Another assumption that cannot be made (even though 

The usual forward biased diode may allow this 



assumption, but consider the parametric (varactor ) diode which 

is the p-n junction in reverse bias Condition, as shown in the 

Figure 4. The depletion layer is the effective llwidthll of the 

capacitor, and is very small ( RI 1OOOA).  Ae will be shown later, the 

contact disk may be a constant potential VoB but contrary to Equation 

(21)  the current density entering the space below the junction 

(depletion layer) will be uniform. 

I CONTACT DEPLETION 

SEM ICONOUCTOR 

FIGURE 4 CAPACITOR CONTACT TO SEMICONDUCTOe. 

This means that not only must we contend with a surface of constant 

potential and varying (in r )  current density but also with a 

surface of constant current density and varying potential. 

An approach to the solution with constant current density 

was  made by Kennedy (Ii) who obtained the correct  potential 

1 2  



I .  

2 distributions but then by using a definition of questionable accuracy 

for the resistance, did not obtain the proper te rm for the spreading 

r e  sistance. 

Kennedy (11) gives t h e  additional example for constant 

current density to be that of the mesa transistor, illustrated in 

Figure 5, 

/ EMITTER 

FIGURE 5 M E S A  CONSTRUCTION SHOWING E L E C T R I C  
C U R R E N T  SPREADING IN EXTRINSIC C O L L E C T O R  
R ECION. 

which he states has a radius of constant current density approximately 

equal to the emitter radius because there exists negligible minority 

car r ie r  spreading within the base region. 

2. 
the definition: the ratio of the maximum cylinder temperature (potential) 
which appears at the center of its circular source to the total heat 
(current) entering this cylindrical conductor. 

Kennedy (in calculating the analogous thermal resistance) uses 

13 



It is instructive and therefore beneficial to elaborate the 

steps to the solution of the boundary value problem in cylindrical 

coordinates that is here encountered. 

A complete solution of Laplace's equation in cylindrical 

coordinates i s  of the form 

V(r,  z )  = Ci t Czz  t (C3ehc t C4e-") J o ( h r )  . (24) 

Note that solutions involving the Neumann functions a r e  not considered, 

as V(0,z) must be finite, and that the cylindrical symmetry 

(BV/8e = 0 )  has already been imposed. 

Let the configurations to be examined take the following form. 

2b 
)I-----.-----.. 

CASE I CASE IT 

FIGURE 6 BASIC MODELS T O  BE ANALYZED. 

It i s  assumed that the semiconductor of conductivity is i n  

contact with a high conductance return portion of the system. 

Thus for Case I we can assume the surface (z = -w, 0 < r < b) and 

14 



for Case I1 the surfaces (r  = b, -w < 2; < 0; and 0 < r < b, z = -w) to  

be essentially at constant potential so that the tangential components 

of the electric intensity will be zero at the boundary. 

the current flow lines to be perpendicular to these surfaces and 

allows the following conditions on V( r, z) 

This causes 

Case I1 V(r ,  z) = 0 r = b  - w < z < O  

V(r,z) = 0 O < r < b  z = - w  

Notice that the condition on 8V/8z has been left as a function 

of J(r) ,  the current density at the contact surface. For  the case 

taken by Kennedy, J ( r )  i s  taken to  be constant and no difficulty is 

encountered. But as J(r)  is left unspecified, f o r  the moment, we 

have the much more difficult tlmixedtt boundary value problem. 

Smythe (13) presents an approximation to the solution of this problem 

fo r  some particular values of (a/b) ratio ( see  Figure 6 )  and gives a 

measure of the ftgoodness1' of the solutions by giving the magnitude 

of the deviation of the equipotential from the surface of the disk 

electrode. Smythe's solutions a r e  restricted to  Case I. An 

Appendix to Sackett's paper (9) gives a derivation by Roess which 

follows a similar form, and in each case, for actual results, 

15 



the deneity function of Equation (21)  is ueed and the e r ror  in eo ueing 

this function i s  then given in terme of the deviation of the egui- 

potential from the disk, or the variation of the din& potential itself. 

Case I: Applying 

(24) yields 

the boundary conditions of (25), (26), and (27) to 

where 

IT = [ J ( r )  2rdr # 

and the form of J(r) is a8 yet unspecified. 

n th root of JI(X) = 0,  just ae a: is the n th root of Jo(X) = 0. 

Also note that ah is the 

- - 
Case 11: Applying the boundary conditions of (28), (29), and (30) to  

(24) we obtain 

Now Equation6 (31) and (33) represent exactly the potential 

dietributions fdr the two casee. 

approximations muet be brought in. 

corletant distribution then V ( r ,  z)  is obtained exactly. But i f  the 

equipotential ie stipulated over the disk electrode then we must 

It is at this point that the 

If J ( r )  is taken to be the 

use either Equation (21)  or a modification thereof to represent J(r). 

i6 



Now if we take Equation (21) to  be representative of the 

current distribution associated with the equipotential across  the disk 

electrode we a r e  essentially supposing the return surfaces (of 

potential zero) sufficiently distant so that they do not disturb the 

current flow in the neighborhood of the disk electrode. The limits 

to this assumption must be examined carefully as it is obvious 

that, for Case I, as the ratio (a/b) approaches unity, then J(r) 

must approach the constant current density in the limit. 

as the ratio (w/b) becomes very small, fringing effects at the 

Likewise, 

electrode edges becomes negligible and the current density again 

is expected to become constant and independent of the radius. 

Thus, the approach to  be taken will be to evaluate the 

potentials and then the spreading resistance for the two cases  and 

the two conditions on J(r) and present a "composite" set of data 

which satisfies all the known data or limit points. 

If Equation (21) is substituted for J( r )  into Equations (31) 

and ( 3 3 )  the spatial distribution of potential is obtained. 

Ve(r ,  z) becomes (superscript e is used to indicate electrode 

equipotential) 

Then 

I - 

and VI"!( r, z)  becomes 

3 
by Sackett (p. 4 2 )  as 

The integral encountered in this substitutioil was evaluated 

- - sin (An$.  a rJo(Ani)dr - -  ab a 

n A I =  f 

17 



The equations representing the potentials for the two cases, 

for  the a6sumption of constant electrode current density, a r e  

V i ( r ,  Z )  and V;.(r, z), where the superscript - c is used to denote constant 
L electrode current deneity, which will be taken to be J(r)  = I = / m a  . 

Hence, for  the integral in Equations ( 3 1 )  and ( 3 3 )  we have 

b IT 
a 

J(r) Jo (an i )  rdr  = (a ) -  man J 1 (a n 6  a) , 
0 

and then from Equation ( 3 1 )  we obtain 

and from Equation (33)  we obtain 
O0 sinh[ao(' t ")] J ( ao a)  J (ao r, 

C 2fT 1 n 6  b 1 n b  o n 6  V ( r , z ) =  - 
I1 m a  . ( 3 8 )  

o w  0 2  2 0 
n= 1 cash (an+an) J1(Qn) 

Th'e spreading resistance Rs, has been defined as the total 

. reeis'tance to current of the matter between the disk electrode and 

the return surfaces (zero potential surfaces). 

potential case this resistance represents the I R losses (Po) of the 

For the equi- 
2 

matter, -and for the constant current density case it is only logical 

18 



to make the definition of spreading resistance to mean the resistance 

determined by the I €2 lOSSe8 of the material, therefore we take to 2 

be the equivalent definition 
V 

(Equipotential case) # (39) 

and 

(Constant electrode current density), (40) 
0 
P 

R: = c 
where IT i s  given by Equation (32) to be the total current passing 

through the disk electrode, Vo is the potential of the disk electrode 

for the equipotential case, and Po is the I R loss of the matter 

between the disk electrode and the return surfaces for the constant 

2 

input current density case. As Vo, the equipotential of the disk 

given by Equations (34) and (35). has within the summation the - r 

dependence, we can by the equivalence of formulas (39) and (40) 

use the I R concept most conveniently to dispose of this - r 

dependence. Let P be given by the following equation, 

2 

0 
a 

Po = V(r ,  0) J(r) 2mdr , 
0 

and by using Equation (40) we have 

Rs - - JI V(r ,O) J(r) 21rrdr . 
T 

Then by substituting Equation (37) into (41), and normalizing to 

= 1/40a we have 
R s O  



and by using Equation (40) we obtain 

(43) 

For the equipotential case, by similar procedure we obtain 

and 

Equation6 (42), (43), (44), and (45) now give, in normalized 

form and rubject only to the limitation of the approximations as to 

current dirtribution, the spreading resistance of a wide variety 

of cylindrically symmetric configurations. The results from these 

equations have been obtained through their computation on an IBM 

7094 digital computer. The data a r e  presented in Figures 7, 8, 9 ,  

and IO. 

20 
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FIGURE 7 SPREADING RESISTANCE - ZERO FREQUENCY 
CONSTANT CURRENT DENSITY CONTACT: 
CASE I, 

21 
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FIGURE 9 SPREADING RESISTANCE - ZERO FREQUENCY 
EQUIPOTENTIAL CONTACT: CASE I. 

23 
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The data of these figures are subject to the assumption of 

either constant current density or the current density of the very 

small contact. 

physical configuration takes on a characteristic somewhere between 

these two extremes. 

The current density of most of the range of 

In a real  situation, neither assumption is completely valid. 

It is recognized that for both Cases I and I1 where (w/b) is small  

and (a/b) is only moderately large then fringing effects can be 

neglected and a constant current density must exist. Again, for 

Case I, when (a/b) goes to unity, it is easily seen that a constant 

current density must exist. 

and I1 when (a/b) is small and (w/b) is moderately large then the 

assumed distribution of Equation (21) does hold. 

two assumed distributions represent the limiting situations for the 

current distribution and the resulting resistance values shown in 

Figure I1 (Composite: Case I) represent a smooth transition 

between the two values given in Figures 7 and 8 .  

a s  we have stated, the similar situation holds for all but the larger  

values of (a/b) ratio (hence the cut-off of the curves at the point 

(a/b) = 0.5) and the resistance values plotted in Figure 1 2  

(Composite: Case II) represent a smooth transition between the 

corresponding values shown in Figures 9 and 10. 

Qn the other hand, for both Case I 

For  Case I, the 

For  Case 11, 

25 



- 
b 

FIGURE 4 4  SPREADING RESISTANCE - ZERO FREQUENCY 
COMPOSITE CURVE: CASE I.  
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To justify the presentation of the data in the "composite" 

form, there ar e aeveral approximations that can be used. 

is that of G&M (Chapter XII) which gives, in our own notation, the 

spreading resistance for small (a/b) and (w/b) ratios in  Case I 

(equally valid for Case 11) a s  

The first 

Several values were obtained by hand computation of this expression 

and the points plotted in Figures 11 and 12. 

dietinguitahed by the square enclosures. 

The points a r e  

The eecond expression used to check the composite curves 

i s  the polynodal  approximation given by Roess (9) which was 

experimentally verified by Sackett (9). 

for Case I and (w/b) z i 

In our own notation this is, 

AI = - 4 a w  ( )( ) t [i - 1.40925 (i) t 0.29591 (;I3 t 
R l r b l f ;  

8 0  

t 0.05254 (35 t 0.02405 (El7] (47 1 

Several values were obtained by hand computation and the points 

plotted in Figure 11. The pointe are distinguished by X's through 

the pointe. 
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When the ratio (w/b) i s  very small the resistance can be 

given a s  the resistance of a cylinder of length - w and radius - a 

modified by a factor, call it - F, to include the effect of fringing. 

Then the normalized expression for the resistance is 

Certainly, when the ratio (w/a) is very small, then - F goes to unity. 

Further, it is t rue that for Case I, when ( a b )  = 1, Equation (48) 

holds exactly. These conclusions a r e  demonstrated in Figure 11. 

The dashed lines show how the resistance values do in fact 

approach the asymptotic values as required. 

the ratio (a/b) is small and (w/b) i s  likewise, then the same 

situation holds a s  just described. 

(a/b) above which the assumption of constant current no longer 

holds. 

i f  the dimensions satisfy the bounds a 2 2w and (b-a) 2 2w. 

Figure 12 these bounds a r e  satisfied by all the points lying to the 

left of the dashed line. 

For  Case 11, when 

But there ie a value for the ratio 

Suppose that it be stipulated that the assumption is acceptable 

In 

On the basis of these arguments, it appears that the 

composite curves of Figures 11 and 12 yield accurate values for the 

dc spreading resistance where the disk contact is a direct contact; 

that is, there exists no space charge at the contact, o r  other 

mechanism to  distort the current distribution from that which would 

exist if the disk were not at a constant potential. 



111. SKIN EFFECT AND RF IMPEDANCE 

The constriction of current flow through a small disk 

electrode and the calculation of the resulting distribution i e  

sufficiently complicated at zero frequency that the use of high speed 

computers i s  the only feasible way of obtaining any amount of data. 

This has already been demonstrated in previous sections. With the 

consideration of high frequency operation, one must consider the 
4 influence of skin effect and the degree to which it forces the 

further constriction of the current to the outermost surfacee of the 

region of current flow. 

A. FIELD EQUATIONS 

As the current distributions maintain general 

rotational symmetry and in particular all configurations maintain 

cylindrical symmetry, all the formulas for the field will be 

derived subject to this restriction. 

1. General Rotational Symmetry 

Given the system of coordinates ( e, q, e ) with 

rotational symmetry, the metrical coefficients a r e  defined by the 

equation 
2 2  2 2  2 2  d s 2 =  hide t hZdq t r de (49) 

where r i s  the perpendicular distance from the axis of rotation. - 
If the field has the same symmetry as the coordinate systems, its 

4. Skin effect has been concisely defined by Holm ( 8 ) :  "The Effect 
consists of an  induction by the currents own magnetic field pressing 
the lines of flow towards the exterior of the conductor, thus diminishing 
the effective conducting cross  section and increasing the resistance. 11 
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components a r e  independent of 0, and, following Stratton (14), one 

finds that 

curl E = -jw)r;H 

and 

Y 2 E  curl H = (0 i- jwe) E = T-- 
J W P  

-cm 
brea, up into the following set (for I, = H68)  

and that these relations are satisfied by the scalar function Q which 

is defined as  

9 Q = rH . ( 5 5 )  

Then, in terms of Q, the electric intensities a r e  given as 

=- rhly as ( 5  7) 

The resulting second order, linear, partial differential equation 

that is obtained i s  
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2. Cylindrical Coordinate 0 

Now i f  cylindrical symmetry is encountered so as to 

make deeirable the u0e of the cylindrical coordinate system, we take 

e o r, the radial component; q = I;, the axial component; and e = 8, 

the angular component. 

and r = r. The differential equation takes the form shown in 

Equation (59 ) .  

The metrical coefficients a r e  then hi=h2=i, 

Separation of variables is effected by the substitution of 

Q(r,z) = Q(r) Q ( z )  

into Equation ( 5 9 ) .  This operation yields the two equations 

,a2a(m)- k2 Q(z) = 0 
82 

and 

where y i s  the intrinsic propagation constant and k is the separation 

con stant. 
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The solution to Equation (61) is of the form 

i ke , (63) Q ( e ) =  C e 

where C is a ecale factor to be determined by boundary conditions. 

The solution to  Equation (62) is of the form 5 

where 

From Equations (56) and (57)  the electric intensities are 

found to be 

and 

e 

As the electric intensities must be finite for t = 0, the Neumann 

function of Equation (64) is not allowed, hence C 2  = 0. Then, after 

substituting Equations (60), (63), and (64) into the formulae for Er 

E,,_they obtain the form 

E = 6 9 kr J1 ( P r ) e  &k= Ai 
r 

Y 
and 

5. Reference (15), p. 146. 
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where again A and A2 are scale factors yet to be determined. Sim- 

ilarly the magnetic intensity, obtained from Equations (55) and (64), 

1 

is found to  have the form 

He = AgJl(Pr) . (70) 

B. CYLINDRICAL CONDUCT ORs 

This section coneists briefly of two parts. First 

a claseical example of a skin effect type of calculation is reviewed, 

and second the principles so discussed a r e  applied in detail to the 

large area capacitor problem. 

1. Classical Example - Long Cylindrical Conductor 

F o r  this case we consider the problem of the 

distribution of current in the interior of a long cyliridrical conductor. 

Since we are  assuming a long conductor, the variation of Q along 

the - a axie can be taken to be zero (hence k = 0), which gives Er = 0 

by Equation (66) (or  Equation (68)). If the cylinder is assigned the 

radius r = a, and if EZ(a) is the - z component of the electric intensity 

a t  the cylinder surface, it follows from Equation (69) that 

The currept density i s  related to the electric intensity by 

Ja(r)  = (0 + h e )  E e ( d  , (72)  
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whei-e 0 is the bulk conductivity and e the absolute dielectric constant 

(permittivity) of the conducting; medium. 

for any - r within the cylinder, i e  given in terme of EZ(a) to  be 

The current density Jz( I-), 

from which is obtained the total current, IT, flowing in the cylinder. 

Now the impedance per unit length, ZLe of the long cylinder 

can be given as 

in ohms per unit length, hence 

As k = 0, p = j y  is substituted in Equation (76), and for this 

situation the following formula obtains, 

If i t  be assumed that tare cyl.inc-er i s  a relatively good 

conductor, we can put 
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Define the parameter 

# 

and there holds by Equations (77 )  and (78), the relation 

If the ratio (a/d) >> 1, we may substitute for Jo(X) and J i (X)  

the following approximating expressions 

and thus obtain the much simpler expression for Z1#  

Note that Equation (73)  could have been written a8 

# 

( 7 9 )  

then, as was done in Equation (77), the approximation of Equations 
. I  

(81) and (82)  yield 
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where u is taken a s  the penetration toward the center of the cylinder 

and is a positive number. When u = d, the current density, Jz(r), 

has been reduced by a factor e-' hence d is the classically defined 

skin depth de, and the previously assigned condition (a/d) >> i 

states that this radius of the cylinder i e  large with respect to a skin 

- 

- 

depth. If these conditions be satiefied then the real  and imaginary 

parts of Z1 are equa1,amd if 

Z A  = R1 t jX, 8 

then 

%=X1=2&- ' 
and by Equation ( 7 9 )  with the identification, d = ds we have 

1 
R1 = xi = s 

Equation (87)  is called the Rayleigh formula6, Equation 

(88) shows the resistance per  unit length of the conducting cylinder 

to be inversely proportional to the a rea  of'an annulus of very 

small width, dS, and circumference 2 ~ a .  

the fact that the current predominantly flows in a skin of thickness 

ds on the surface of the cylinder when ya is large. Various values 

of 0 (or  p = 1/0) were  used, and a broad range of values of d versus 

frequency a r e  shown in Figure  13. 

This is consistent with 

s 

6. Reference (12), p. 348. 
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It is  easily shown that, by Equation (77), if (a/de) << i, 

then as J1(X) h X/2 and Jo(X)  f 1 for small X, 

1 

na a 
z 1  =-z , 

which is just the dc resistance of the cylinder. 

2. Cylindrical Capacitor 

A most interesting problem in the consideration of 

diode resistance ie the determination of the spreading resistance of 

the diode capacitor. This RE is  most critical in two diode capacitor 

applications. The first application is to  the low noiee parametric 

amplifier in which it represent8 the primary noise source. The 

second application i e  bo the varactor (variable reactor) harmonic 

power generator. For  the first application, the radiue a of the 

contact is equal to or lese than the skin depth in the metal wire 

contact and is much less than the skin depth in the semiconductor. 

- 

In the second application, the radius of the contact surface ie  much 

greater than the skin depth of the metal contact and in most instances 

of practical importance can be considered to be much greater than 

the skin depth in the semiconductor also. 

must usually be qualified by closer consideration of the terminal 

This last  statement 

frequencies involved as there may be as much as an order of 

magnitude difference between the signal and pump (and idler)  

frequencies of the parametric amplifier and also between the input 

and harmonic frequencies of the multiplier. 
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The queetion of the operation of the point contact diode 

will be put off until a later eection. 

assumption of equipotential contact surface. 

There it will be treated with the 

A complete formulation of the broad area  contact problem i e  

prohibitively complex but the important characterietice of the 

circular, back-biaeed jum tion may be derived by aseuming it to be 

a circular, planar capacitor. 

parallel circular platee of conductivity ai and a2. The plates a r e  

separated by a narrow region of width d called the depletion layer 

(16) (17)# the width of which we will aeeume to be determined and 

fixed by an applied reverse biae potential. 

represented a8 shown in Figure 14. 

Coneider a capacitor consisting of two 

This arrangement may be 

The plates (1 and 2) have been shown a s  having different 

widths ae well  as different conductivities. 

approximate the large area (volume) dot or disk which would be used 

in the ueual alloy junction forming process. The region 2 represents 

the basic semiconductor wafer. 

regrowth (junction) location. 

The region 1 may 

The region 3 then represents the 

The - z axis is the axis of symmetry, and it is safe to 

assume that the width of the depletion layer - d is  very small compared 

with either radius - a or - b and with the wavelength. That is 

d < < a s  b ; d < <  h P ( 9 0 )  
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FIGURE 14 DIODE CAPACITOR REPRESENTATION. 
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hence, edge effects may be neglected, and the electric and magnetic 

intensities of region 3, Ez3 and H can be taken to be independent 

of z, and Equations (70) and (71) hold, i. e. , 
03' 

- 

and 

By application of the circuital law, 

the amplitudes EZ3(a) and H 

total current Izi entering or leaving t h e  interface between regions 

1 and 3. Thus 

(a) may be obtained in terms of the 
e3 

8 

and 

. 

(94) 

(95) 

Now we have taken this to be the case, that the frequency 

is sufficiently high that the thickness of the plates and their radii 

a r e  large compared to the skin depth (tii, tj2) as shown in Figure 14. 

Then it may be assumed that most of the current flowing in 

region 1 flows in a thin layer, 618 radially, along the inner surface 
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of the conducting regions at the interface to region 3, around the 

edges and then axially (in region i )  just as was determined for the 

long cylindrical wire. 

in a thin layer 62 radially along the inner surface of the conducting 

region at the interface to region 3, and then directly radially to the 

return surface at r = b. 

Similarly the current flowing in region 2 flows 

The radial current, Iri(r), at the interface can be 

determined by a second application of the circuital law by taking the 

cap surface to consist of a circular plate of radius r parallel to the 

interface of regions i and 3, but deep within region 4,  and of a 

cylinder of radius r through which the radial current flows. A s  the 

plate is deep within the conductor (region 4 )  the integral over this 

surface is essentially zero. 

- 

- 

And then 

but using Equation (94) we obtain 

, ( 9 7 )  

which can be considered the total quasi-surface current flowing 

radially at the radius r. 

defined as the total radial current traversing a unit circumference, i. e. ,  

The Surface current deneity, I:(=), is then - 
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It ha8 been shown’, that when the above imposed conditions 

a r e  eatisfied, that a surface impedance may be derived for regions 

1 and 2 which is 

where ds is again given by Equation (79). and that the average 

power dissipated per unit a rea  of surface is AP, 

2 Formula (100) i e  an expreeeion for the I R lose which can be 

evaluated and to which an equivalent R8 can be assigned. 

evaluation is performed in  several parte. 

to R e  (call it R i 3 )  from only the interface between regions i and 3 

ie evaluated. 

regions 2 and 3 is similarly obtained. 

axial flow in region 1, R,,, ie  taken directly from Equation (88). 

contribution due to the surface flow in region 2, but outside the radial 

limitation of r = a, ie the final term, call it Rsk. 

The 

First the contribution 

s Then that contribution, Rj2, at the interface between 

The contribution due to the 
8 The 

s 

Then by Equations (98), (99), and ( i O O ) ,  there is obtained 

7. Reference (12), Chapter V, Section 13. 
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8 0 2  i R 8  2 R (Ir) 2r r  dr = i 3  Iei . 
0 

The factor (1/2) is used before the eecond two t e rms  because of the 

convention wherein I refere  to  peak quantities. Now R i 3  8 is obtained 

from Equation (404 )  and i o  found to be 

For  the most important casee of application, it i r  valid to  

aseume 

pa << 4 # (403) 

where upon we can uee the Beerel function simplification for rmall 

81: guments 

Jo(X) 5 4 

and 
X 

J & X P  'z 

s to  obtain for R13 the formula 

(106)  
1 

R1"3= 4ndsiui 

which has the surprising characteristic of being independent of the 

radius of the interface. It is obvious that the expression for R f Z  is 

similarly given. 
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1 
R i 2 =  4ads2’52 . 

For expressions (106) and (107), ai and o2 refer  to the conductivities 

of regions 1 and 2 respectively; likewise dsi and dsZ refer to  the skin 

depths of regions 1 and 2 as evaluated by Equation (79). 

formula for ds from Equation (79) be substituted into Equations (106) 

and (i07), we obtain an expression for the total interface I R loee. 

If the 

2 

and here we note the similarity between this expreseion and the 

Rayleigh formula (87). 

The contribution due to the flow of eurface current in 

region 2, but for r > a, is obtained by substituting 

t 

into Equation (101); and again using RE from Equation (99) we obtain 

1 b 
In 

Finally, the total series resistance8 of a large a rea  varactor diode 

which can be represented by Figure 14 is given as 

a. 
presented by Hinea (21).  
but i s  appears that only the interface contribution was considered. 
Hines gives 

An expression for Re for  the broad a rea  varactor was first 
Details of his derivation are not available 

1 + - ) .  
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Equation ( 1 4 1 )  reflects the fact that we had previously made 

the assumption that the media of regions 1 and 2 a r e  relatively good 

conductor e. That ie, the inequality 

holds in both regions. Alternatively, it is said that the dieplacement 

currents a r e  negligible when compared to the conduction currents. 

The effect of non-negligible displacement currente will be 

discussed in a later section. 

C. THE POINT CONTACT DIODE 

Skin effect at a metal- semiconductor contact ha8 

The intent of that examination already been briefly examined. 

was to determine the spatial distribution of current at the contact. 

A very simple model was  considered. It consieted of two semi- 

infinite right circular cylinders, one of metal, the other of eemi- 

conductor having the same diameter as the metal, and connected 

coaxially with a nonrectifying butt joint. 

reference to cylinders of diameters comparable to the diameter 

of the point of the practical point contact diode, It is shown that 

the redistribution of current flow lines f rom a decided skin effect 

The resulte a r e  given in 

9. Reference (18) - Appendix B. 
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in the metal to a negligible effect in the semiconductor takes place 

mostly in the metal. 

i s  entirely negligible for all point-contact rectifiers at any microwave 

frequency and the current flow at the contact may be treated with the 

dc approximation. 1' Not considered was the fact that the current fans 

out in the semiconductor, and, when skin-effects set in, the total 

spreading resistance increases by the fan-out's becoming extreme 

to the point of crowding the current lines up to the surface of the 

semiconductor of a diode of the form of Figure 3. 

Thereafter, it i s  concluded that, "the skin effect 

This section will deal with the problem of the point contact 

diode, and we will  derive a fairly rigorous expression for the epreading 

resistance which will  include both frequency dependent (skin effect) 

terms and terms involving the semiconductor geometry. 

be further shown that the junction will definitely behave Just as at 

dc, but that there is a significant correction to be made to Rs because 

of skin effect. 

It will 

1. The Natural Coordinate System 

The previously noted analysis and others which have 

similar configuration have contained drastic simplifications due to  

the complexity of exact analysis in cylindrical coordinates, which 

system, because of the phyeical configuration, one would consider 

the most applicable. But if one considers the dc case, it may be 
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shown that the oblate spheroidal coordinate system is the natural 

system as the current flow linee coincide with the coordinate system. 

Allow Figure 15 to define the coordinate system (19). 

The rectangular (x, y, z )  coordinates a r e  related to  the 

(6, ?1, 4) oblate spheroidal coordinates by the formulas 

2 2  1/2 
x =  aC(1-q )(t ti)] 

y = aEi -q2 ) (~2 t1 ) ]  sin 4 

cos + 
112 

The metrical coefficients a r e  given a e  

and 

2 Laplace's equation, V V = 0 is given in oblate spheroidal 

coordinates as 
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where the 

contact Burface, taken to be the diek of radiue a at 6 = 0, i e  at 

constant potential Vo. Since the contact disk is equipotential, then 

Laplace'e equation ehowe that ( 8V/Sv) 

entire region and the potential V, mu8t therefore be  independent of q. 

Equation (119) then reduces to 

dependence has already been eet equal to aeroI The 

- 

0 must hold through the 

which has the solution of the form 

where Ci and C a r e  constants of integration. If we take V = Vo 
at  

2 

= 0 and V = 0 at f -00, it can be shown that 

The current density is J = -OW which is 

and by ueing Equations (116) and ( i 2 2 ) ,  J become8 at the disk 

electrode (E = 0)  

-2Voa 
J =  narl 

Integrating this current density over the surface of the disk one 

obtains the total current IT which allows the calculation of the 

spreading resistance RB = Vo/IT. 



IT = 4Voaa 

Thus 
- 1 

R s - 4 0 a  

which agrees with the result previously obtained for the infinite 

half space (Equation 22). Likewise, if one solves Equation (118) for 

rl when 6 = 0 and substitutes this into Equation ( 1 2  4), then Equation 

(19), representing the current density into the diak, is likewise 

verified. 

2. Field Equations in the Oblate Spheroidal Systems 

To extend these considerations to the determination 

of the skin effect, we return to  the use of the scalar function Q. If 

the metrical coefficients a s  given in Equations (i16), (117), and (118) 

a r e  substituted into the differential Equation (58), there is obtained 

the differential equation for Q which must be satisfied when Q is 

described in the oblate spheroidal coordinate system, 

Use of 
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to effect the eeparation of variables leads to the two differential 

equations, related only by the separation conrtant - c, given by 

Equations (429) and(i30), 

(e2+1),--&J O2Q 6 - (a 2 2 2  y 6 + CDW = o 
ak 

and 

(430)  

2 2  Upon retting C = a y , eolutiona for Q(6) and Q(1) may be obtained 

of the form 

(433)  Q(E) = CieaY' t c 2 e  -ay€ 

and 

Further, we expect Q to have an exponential e dependence, and a e  

z = aqe, it is easily ehown that Q( 6, q) may also take the form 

e 

Therefore, a solution of Equation (127) could take the following 

where the coefficient8 Ai, A2, and A3 a r e  arbi t rary conetante, 

and the negative exponential ha8 been dropped a s  we require Q to be 

finite a0 6 4 ~ ) .  
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It i s  recognized that solutions of Equation (127) via the 

procedure of separation of variables and the use of Equations ( 1 2 9 )  

and (130) a r e  infinite in number and may be obtained in the form of 

Lam6 products (19)s but it will be shown that the form given in 

Equation (134) is sufficient to satisfy the boundary conditions on Q. 

Q is defined by Equation (55). By the circuital law we obtain the 

form of Q to be 

where we have made use of the independence of Q(k, q) from 4. 
IT( e ,  q) is the total current passing through the cap surface S, which 

is bounded b y  the curve C, which i s  a circle passing through the 

point ( 6 ,  q) such that the cap S is normal to the - z axis as 

shown in Figure 15. 

If we take IT to be the total current flowing across  the 

surface (6 = 0), then the following conditions apply and must be 

satisfied by Q( 6, q). 
t 

a(-a># q) = 0 

IT 
Q ( - a ,  0 )  = z;; 

These four conditions a r e  satisfied by 
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From Equations ( 5 6 )  and (57)  the electric intensities a r e  found to be 

and 

3. Current Distribution 

The current densities a r e  given by 

and 

Equations (143) and (144) were evaluated at the contact 

surface E, = 0. An average current density, 7 = IT/na 2 , is defined 

after which the ratios Jk/J and J q / S  were calculated for various 

points across  the contact and the results plotted versus (r/a), the 

fractional radius. Again the assumption is made that the material is a 

relatively good conductor. Then as 
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# (145) 

where ds is from Equation ( 7 9 ) ,  the normalized current densities 

can be plotted as a function of the ratio a/ds, which is the ratio of 

contact radius to bulk material skin depth. Figures 16 and 1 7  show 

JT/J and JE/J respectively for three values of a/ds. But note in 

each case ( a s  was calculated) there was no significant difference 

between the case for (a/ds) = 0.25 and (a/d,) = 0.  

obviously is the dc case, and the curve of J /J' is just that which 

would be obtained'by plotting Equation (124) versus r/a. But the 

case (which does not measurably differ from the dc case) 

(a/ds) = 0.25 corresponds to an extreme case determined by the 

condition B : 

The latter case 

5 

i )  frequency of 50 Gc. 

ii) A contact radius a = 0.05 mil. This is representative 

of typical microwave and millimeter wave point contact diodes (3) 

(18). 

iii) Bulk semiconductor resistivity p = 0.0005 ohm-cm. 

This figure represents the resistivity that would be 

encountered in millimeter wave tunnel diodes and is from one to 

two order6 of magnitude lower than that encountered in the more 

conventional point contact diodes. 
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Inspection of the curve for  J shows that essentially 
T 

= 0 for (a/ds) 5 0.25 and becomes measurable only when (a/de)" 0.5. 
JT7 

But for the same conditions a8 in ii) and iii) above, this ( a / d e f  

ratio corresponds to a frequency range of 200 Gc. 

the I R contribution due to 3 

due to J 

the current density expressions a re  good, and the contact still 

represents an equipotential. 

Further, as 
2 will be less  than 0 . 9  per cent of that 

it would appear that even to this extreme value of (a/ds) 
T 

e ,  

The curves for (a/de) = 1.0 show much more deviation 
2 for J 

this figure, (a/ds) = 1.0, corresponds to a frequency of 800 Gc 

which is quite beyond the range of anticipated application of these 

results. 

and its I R contribution now becomes about 5 per cent. But 
?' 

In addition to the curves for J and J the curves showing 
rl 5' 

the actual current distribution a re  shown in Figure 18. 

figure I(r/a) is the total current entering the electrode in a circle 

of radius r. 

Notice that the curves for (a/ds) = 0,  0. 25, and 0.5 essentially 

coincide (within the plotting ability), and that no appreciable 

redistribution of the current occurs until (a/d8) becomes greater 

than 0.5. 

of 800 Gc for this case, begin to show deviations, but are still far 

below the curve shown for the case of constant current density. 

In this 

This is then normalized to the total current IT. - 

The data for (a/ds) = 1, which corresponds to a frequency 
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With this development and this discussion it is believed 

that the statement, 'I at the junction, the current flow may be treated 

with the dc approximation", has been sufficiently rigorously proven. 

In addition, meaning is given to  the statement, because now the 

equations exist which allow the evaluation of the associated spreading 

resistance, and make it unnecessary to assume that, because the 

junction can be treated with the dc approximation, the rest  of the 

problemcan be also. 

4. Spr eading R e s i s tanc e 

To obtain the spreading resistance with the skin 

effect contribution the following assumption will be made; that the 

wafer of semiconductor material, rather than being considered 

the infinite half-space, have a definite radius b, and that the thickness 

of the wafer be appreciably greater than the skin depth in the wafer. 

Except for diodes constructed on epitaxial materials this is a good 

assumption. Allow Figure 19 to show the situation. Region 1 

represents the metal point contact. Region 2 is the semiconductor 

buried in the metal, high conductance return path 3. If the metal 

regions a r e  of sufficiently high conductance relative t o  the 

semiconductor, then the principal potential drop will be across the 

semiconductor. 

(141) and (142) are  examined, it can be seen that, for 6 >> 1 and 

for z = 0 (aqc = 0), E vanishes and that near the semiconductor 

If the expressions for the electric intensities 

1 

6 1  



METAL POINT 

FIGURE 19 POINT CONTACT WITH SKIN EFFECT. 
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surface the current flow, Ir, becomes strictly radial as 

illustrated in Figure 19; hence the validity and necessity of 

applying the realistic condition at r = b. 

the semiconductor from r = a to r = b can be taken as 

The potential drop across  

where the integration proceeds along any one radial line because of 

the cylindrical symmetry of the situation. By Equation (118), for 

q =  0 

.JE"+i 
and V is evaluated by Equation (146) by 

where 

Call the f i re t  and second integrals of Equation (148) I1 and I2 

respectively. I1 is integrated directly and found to be 

Calculation of I2 is a bit more troublesome. 

a y  = e into I2 yields 

Substituting 6 = -t and 
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1 /2 
where in  the upper limit [ ( a) - 4 3  the one was dropped, a s  the 

ratio (b/a) is typically equal to or greater than 200. Because of 

the size (b/a) we can, for all intents and purposes, set  the upper 

limit equal to +a, whereupon we find that I2 is now the Laplace 

transform of the classical function known a8 the Witch of Agnesi (20). 

The transform of this function is given in te rms  of sines, cosines, and 

sine and cosine integrals. Thus, 

Equation (15 2)  is not particularly tractable, but by use of ser ies  

expansions f o r  the functions Si(X) and Ci(X), evaluation of I2 could 

be accomplished. 

sufficiently small that the exponential of the integrand of Equation ( 1 5  1) 

may be considered essentially zero; then 

However, for most applications (a/d,) is 

-1 b I2 tan (z) 

The impedance i s  then found to be 

Z k  

Agreement is 

(453) 

(154) 

obtained with the dc case with infinite half space of 

semiconductor, by noting that as (b/a.) *m and frequency U) + O  we 

have 

and 
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t 

ds *oo as u) * O  

yielding, in the limit 

1 
z =  4aa lim 

w + o  

a 

a (357) 

b 
a - +oo 

which agrees with Equation (126). 

The real part of Z can now be taken to be the total spreading 

, resistance, Re, of the device shown in Figure 19. Thus 

and 
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IV. CONDUCTION CURRENTS VERSUS DISPLACEMENT 

CURRENTS 

In all the calculations and discussions in the paper 

involving the skin depth de, the assumption has been made that the 

region of interest was composed of a "reasonably" good conductor, 

and thus the ratio, Q, of the magnitudes of the displacement to 

conduction currents was taken to be zero. 

the attenuation term, Re , must be re-examined. If we call 6 

the true skin depth then 

If such is not the case 

1 6 =  

Re{y) 

As y i s  the intrinsic propagation constant then y2 is given by 

y2 = jw (a t j w )  (161) 

and for Re{y} it may be shown that 

Re{y) = (4tQ2)1'4 cos [i (z t tan-'P)l , (162) 
8 - 

where fl is defined to be 

, 

where 

space and the relative permittivity (dielectric constant) r espectively. 

0, as was defined previously, is the conductivity of the material, ds 

is the skin depth (Equation ( 7 9 ) )  a s  calculated for  p = 0, and shown 

in Figure 13. 

= e e , in which c o  and C r  a r e  the permittivity of f ree  o r  
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Now the true skin depth, 6, is given by 

6 = K  ds e (164) P 

where the scale factor K is taken f rom Equation (162) and is a 

K is plotted versus Q and presented in P Figure 20. In all the cases 

where the te rm ds was used, if it be necessary, the corrected term 

6 may be obtained by evaluating K (reading from Figure 2 0 )  and 

scaling de accordingly. In all cases, the skin effect term of the 

spreading resistance is inversely proportional to K , and thus the 

correction applies directly to the resistance term. 

P 

e 

To demonstrate the general range of f3, we compute for a 

semiconductor of = 16 and conductivity CJ = 

frequency of 100 Gc, and obtain f3 1.0. For these conditions the 

t rue skin depth 6 will be about 60 psr cent greater than that value 

de, normally used. 

high frequency was taken and that the material resistivity was 

trnho/cm and a 

But it should also be pointed out that a very  

at least  one order of magnitude too high for  the usual millimeter 

wave point-contact diode and as much a s  three orders  of magnitude 

higher than the resistivity needed for the fabrication of high 

frequency point-contact tunnel diodes. 

that for most high frequency diode calculations the correction need 

not be applied. 

with skin effect is being considered in a transistor. 

By these arguments it is seen 

Similar arguments apply when the spreading resistance 

While 
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I 

the resistivity of the transistor material may be one to two orders 

of magnitude higher than in a microwave diode, the frequency of 

operation i s  usually two to three orders of magnitude lese than the 

100 Gc figure used here. Again the correction term should prove 

negligible. 
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V. CONCLUSIONS 

The dc spreading resistance has been calculated 

specifically for the constant current distribution and the current 

distribution of the disk electrode over an infinite half space. The 

calculations were performed for a large range of the geometrical 

parameters (a/b) and (w/b). 

Figures 7, 8, 9, and 10. 

The data have been presented in 

Presented also a re  “compositelt curves which a r e  

applicable t o  almost any case wherein the disk electrode is a 

direct contact and is aq equipotential. 

presented in Figures i t  and 12. 

applicability of these curves is given at the end of Section V. 

The composite curves a r e  

A discussion of the limitations of 

Equations for the spreading resistance of the broadarea  

variable capacitance diode and the point contact variable resistance 

diode have been derived in terms of frequency, material characteristics 

(p, c, a), and physical parameters (b/a) and (w/a). The results 

a r e  presented in Equations (ill ) and (159). 

The field equations for the point contact diode 

configuration hqvs been derived in te rms  bf the oblate epheroidal 

coordinates. 

system fo r  such an analysis and that the spreading resistance is 

quite readily derived in this system., 

It has been shown that this i e  the natural coordinate 

A discussion is presented which shows that the effects of 

displacement current in the semiconductor are,  in most instances, 

negligible in comparison to the conduction currekite. 
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The author claims the following features to be the 

contributions of importance to the literature of electrical 

( s emiconductor ) engineering : 

i) The graphs of Figures 7 through 12, presenting data 

which a r e  eaeily used to determine the low frequency diode spreading 

resistance, Rd for a wide range of parameters. 

ii) The detailing of the methods of treating the skin 

effects in capacitor diodes. 

iii) The derivation of the field equations and the resulting 

spreading resietance of the point contact device. 
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